Mairie du Tampon 256 rue Hubert Delisle 97418 Le Tampon

Etude hydraulique du secteur La Pointe au Tampon

N° d'Affaire RE-18-006 **Version** 0.0 Janvier 2018

SUIVI ET VISA DU DOCUMENT

Réf. RE-18-006

Etude: Etude hydraulique du secteur La Pointe au Tampon

Phase: 1

Date de remise : Janvier 2018

Version: 0.0

Statut du document : Provisoire

Propriétaire du document : Mairie du Tampon

Chef de projet : Xavier FERRADOU

Rédacteur : Xavier FERRADOU Vérificateur : Karl LEMARCHAND

SOMMAIRE

SI	JIVI E	ET VI	SA DU DOCUMENT	2
S	DMM.	AIRE		3
LI	STE	DES	FIGURES	3
LI	STE	DES	TABLEAUX	4
Ρŀ	REAN	/IBUL	E	5
1.	LC	CALI	SATION DE LA ZONE D'ETUDE	6
2.	ET	AT D	ES LIEUX	6
	2.1.	Rés	seau d'Eau Pluviale existant	6
	2.2.	Enj	eux de l'étude	11
	2.3.	Ret	our d'expérience sur les évènements Berguitta et Ava	12
	2.3	3.1.	Retour sur expérience	12
	2.3	3.2.	Rue des filaos	13
	2.3	3.3.	Impasse des merles blancs	14
	2.3	3.4.	Chemine de la Pointe et rue des Mainates	15
	2.3	3.5.	Réseau EP de la RD3	16
	2.4.	Hyd	drologie	17
	2.4	l.1.	Caractéristiques générales du secteur d'étude	17
	2.4	1.2.	Cartographie des bassins versants	17
	2.4	1.3.	Détermination des débits de projet	19
3.	PR	OPO	SITION D'AMENAGEMENT	23
	3.1.	Am	énagement et recalibrage du réseau EP de la RD3	23
	3.2.	Mét	hode de dimensionnement des ouvrages hydrauliques	25
	3.3.	Rés	sultats	26
4.	CC	NCL	USION	27
			LISTE DES FIGURES	
⊏i,	auro	1 • 70	ne d'étude	6
	_		seau EP, Parte Sud	
			seau EP, partie intermédiaire	
	_		seau EP, partie Nord	
			njeux de l'étude	
	_		otos de Berguitta et écoulements chez des riverains de la rue de Fi	
	_		otos de Berguitta et écoulements chez des riverains de l'impasse de	
			oulements autour du chemin de la Pointe	

4

EH_LaPointe

Figure 9 : Inondation de la RD3 durant Berguitta	16
Figure 10 : Cartographie des bassins versants	18
Figure 11 : Zonage pluviométrique simplifié (Guide sur les modalités de gestion des pluviales à la Réunion, DEAL, 2012)	
Figure 12: Plan d'occupation des sols de la commune du Tampon	21
Figure 13 : Cartographie des aménagements	24
LISTE DES TABLEAUX	
Tableau 1 . Caractéristiques du réseau FD	10
Tableau 1 : Caractéristiques du réseau EP	10
Tableau 2 : Caractéristiques des bassins versants	17
Tableau 3 : Temps de concentration	19
Tableau 4 : Coefficients de Montana en fonction de la zone pluviométrique simplifiée (sur les modalités de gestion des eaux pluviales à la Réunion, DEAL, 2012)	
Tableau 5 : Coefficients de ruissellement unitaires	21
Tableau 6 : Coefficients de ruissellement	22
Tableau 7 : Débits de projet	22
Tableau 8 : dimensionnement pour une occurrence décennale	26
Tableau 9 : dimensionnement pour une occurrence trentennale	26
Tableau 10 : Dimensionnement pour une occurrence centennale	27

ANNEXES

Annexe 1 : Fiches de calculs hydrologiques

Annexe 2 : Dimensionnement hydraulique

PREAMBULE

Les évènements de forte pluie de Janvier 2018 (Ava et Berguitta), très intenses dans le Sud de la Réunion, a particulièrement touché la commune du Tampon.

Ces évènements ont mis en évidence des dysfonctionnements du réseau d'assainissement pluvial de la RD3 entre la ravine Jacques Payet et la ravine du cimetière qui ont occasionné des inondations dans des parcelles habitées.

La commune du Tampon souhaite prendre des mesures. Le réseau d'assainissement pluvial de la RD3 est particulièrement visé.

Cette étude a pour objectif de proposer et de dimensionner les aménagements à réaliser.

1. LOCALISATION DE LA ZONE D'ETUDE

Le projet est situé sur la commune du Tampon, dans le quartier de la Pointe, entre la ravine Jacques Payet au Sud-Est et la Ravine du Cimetière au Nord-Ouest. Les enjeux majeurs de l'étude se situent de part et d'autre de la route départementale n°3 ou rue du Paille en Queue.

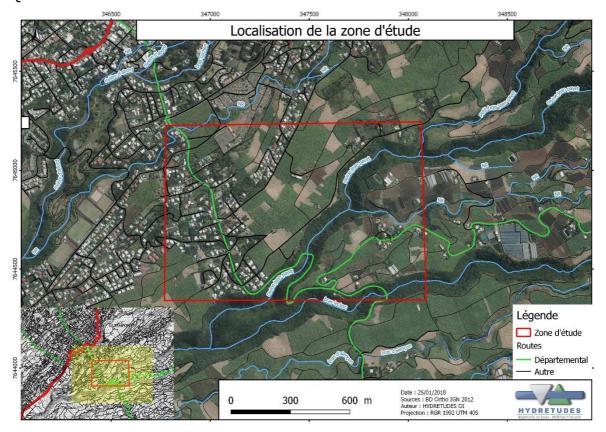


Figure 1 : Zone d'étude

2. ETAT DES LIEUX

2.1. RESEAU D'EAU PLUVIALE EXISTANT

Le réseau d'eau pluviale de la zone d'étude est celui associé à la voirie de la route départementale N°3 qui a pour objectif d'intercepter les eaux de ruissellement provenant des bassins versants interceptés à l'amont avant de les orienter vers les exutoires que sont, du Sud au Nord :

- La ravine Jacques Payet,
- Un talweg naturel situé proche du croisement entre la route départementale N°3 et le chemin de la pointe du Tampon,
- Un talweg naturel situé proche du croisement entre la route départementale N°3 et la rue des Filaos,
- La ravine du cimetière.

L'état des lieux de la présente étude est basé sur les données du SDEP de la commune du Tampon, réalisé par Egis, complété, affiné ou corrigé par un diagnostic de terrain précis.

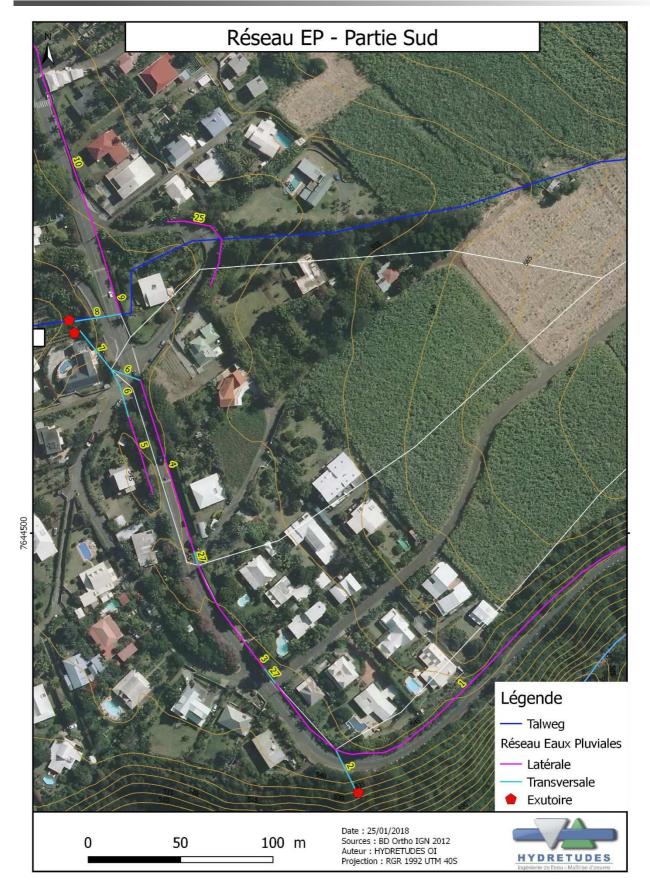


Figure 2 : Réseau EP, Parte Sud

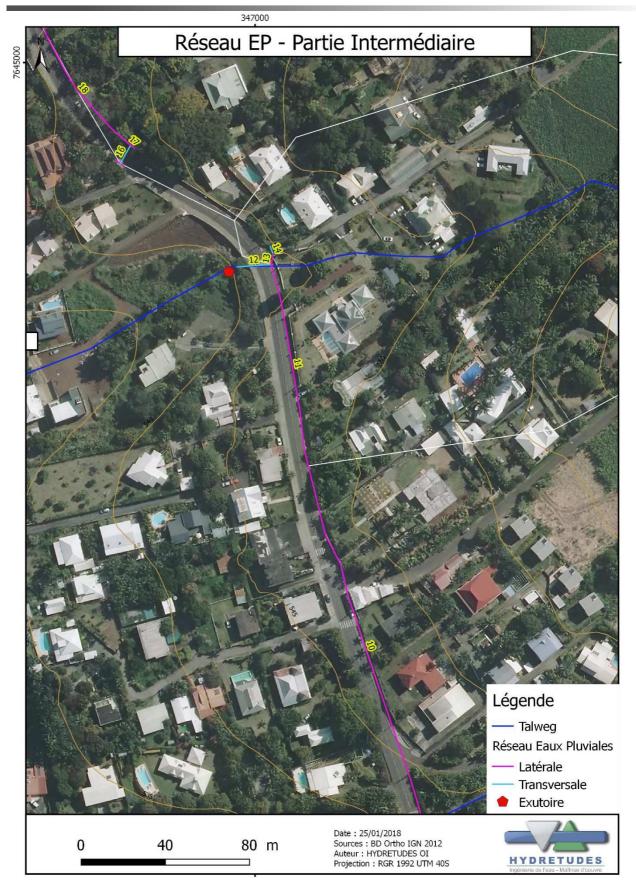


Figure 3 : Réseau EP, partie intermédiaire

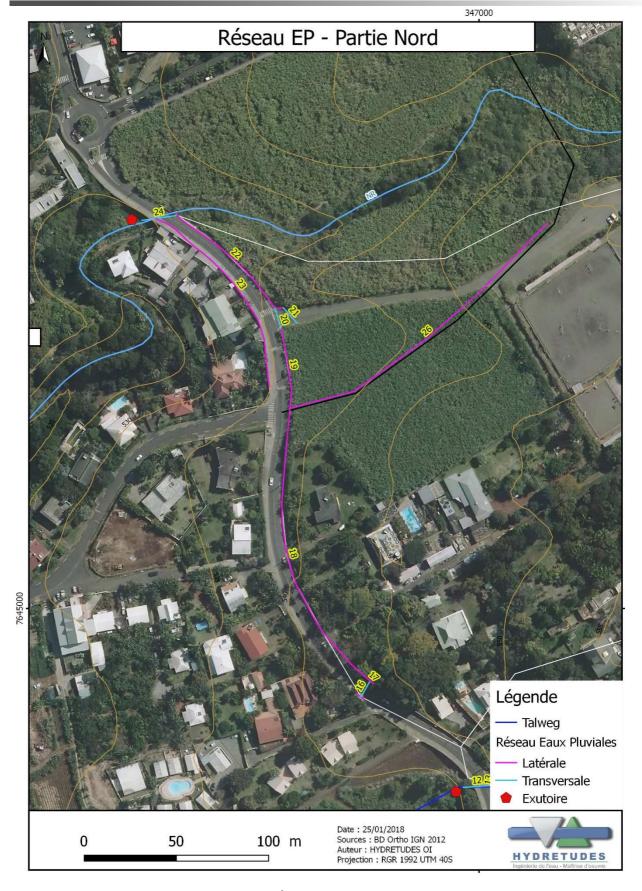


Figure 4 : réseau EP, partie Nord

HYDRETUDES
RE18-006-v0.0-provisoire

EH_LaPointe

							Dysfonctionn
Id	Objet	Туре	Structure	Dimensions	Position	Observation	ement
	,	/ 1				Exutoire vers	
1	Fossé	U/V	Naturel	1100x600	Latérale	ravine	
		•				Exutoire vers	
2	Buse		Béton	Ø600	Transversale	ravine	
3	Canal	U	Béton	1100x600	Latérale		
4	Canal	U	Béton	1100x600	Latérale		
5	Fossé	U	Béton	1100x500	Latérale		
6	Buse		Béton	Ø600	Transversale		
				-		Exutoire vers	
7	2 Buses		PVC	2x400	Transversale	talweg	
						Exutoire vers	
8	Buse		Béton	Ø1000	Transversale	talweg	
9	Canal	U	Béton	2400x3000	Latérale		
10	Buse		PVC	Ø600	Latérale		
						Exutoire vers	
11	Buse		PVC	Ø600	Latérale	talweg	
						Passage talweg	
12	Dalot		Béton	1500x1500	Transversale	sous chaussée	
13	Buse		PVC	Ø300	Latérale		
	Caniveau	Passage					
14	Superficiel	grille	Fonte	400x400	Transversale		
	Caniveau						
15	Superficiel	Fente	Fonte	640x160	Latérale		
16	Buse		Béton	Ø300	Transversale		
	Caniveau						
17	Superficiel	Grille	Fonte	650x650	Latérale		
18	Buse		Béton	Ø400	Latérale		
19	Fossé	U	Naturel	1500x600	Latérale		
20	Buse		Béton	Ø800	Transversale		Bouché
	Caniveau	Passage é					
21	superficiel	grille	Fonte	600x600	Transversale		Bouché
						Exutoire vers	
22	Fossé	U	Naturel	1500x600	Latérale	ravine	
						Exutoire vers	
23	Buse		PVC	Ø600	Latérale	ravine	
						Passage ravine	
24	Dalot		Béton	4500x3000	Transversale	sous chaussée	
25	Canal	U	Naturel	400x200	Latérale		Bouché
26	Buse		PVC	Ø400	Latérale		
	Caniveau	Passage					
27	superficiel	grille	Fonte	600x600	Transversale		

Tableau 1 : Caractéristiques du réseau EP

2.2. ENJEUX DE L'ETUDE

L'enjeu principal de cette étude est la présence sur la zone d'étude de parcelles d'habitation sur des talwegs naturels. Les évènements pluvieux de janvier 2018 (Ava le 11 janvier et Berguitta le 18 janvier) ont montré que pour des fortes intensités de pluie, ces parcelles sont traversées par des écoulements importants, pouvant créer des dommages matériels et mettre en danger la sécurité des personnes.

De manière plus large, c'est l'ensemble du quartier de la Pointe, situé à l'aval de la RD3 qui est concerné par le projet.

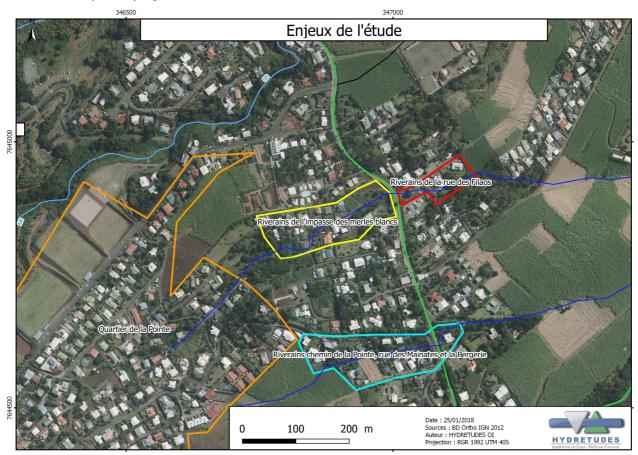


Figure 5 : Enjeux de l'étude

2.3. RETOUR D'EXPERIENCE SUR LES EVENEMENTS BERGUITTA ET AVA

2.3.1. Retour sur expérience

Ce retour d'expérience est basé sur des observations de terrain et sur des échanges avec les riverains qui ont vécu les inondations du 11 janvier (Ava) et surtout du 18 janvier 2018 (forte tempête tropicale Berguitta).

Ce retour d'expérience n'est pas exhaustif mais permet de faire ressortir les dysfonctionnements hydrauliques sur le secteur de l'étude, en particulier ceux liés aux aménagements de la RD3.

2.3.2. Rue des filaos

Les écoulements de la zone de la rue des Filaos est marqué par la présence d'un Talweg qui se divise en deux écoulements juste à l'amont de la RD3. Une partie passe sous la RD per l'intermédiaire d'un petit canal privé (photo 5) prévu à cet effet. Une autre partie va sur la RD après avoir suivi le chemin d'entrée de la propriété (photo 4).

Figure 6 : Photos de Berguitta et écoulements chez des riverains de la rue de Filaos

2.3.3. Impasse des merles blancs

Sur cette zone, le talweg passe dans des jardins. Lors de Berguitta, de l'eau est entré dans le garage d'une maison (photo 4).

Figure 7 : Photos de Berguitta et écoulements chez des riverains de l'impasse des es merles blancs

2.3.4. Chemine de la Pointe et rue des Mainates

Cette zone est marquée par la présence d'un talweg (ravine Marianne) qui est un exutoire important du réseau EP de la RD3, ce qui implique de forts écoulements.

Figure 8 : écoulements autour du chemin de la Pointe

2.3.5. Réseau EP de la RD3

Le réseau EP de la RD3 a montré à de nombreux endroits des dysfonctionnements : sous dimensionnement, inefficacité des regards-avaloires, embâcles et obstruction. C'est notamment le cas autour du croisement avec la rue des Filaos, comme l'illustre la Figure 9

Figure 9 : Inondation de la RD3 durant Berguitta

2.4. HYDROLOGIE

2.4.1. Caractéristiques générales du secteur d'étude

Le régime hydrologique de la Réunion se caractérise par son importante variabilité. L'alimentation des cours d'eau se fait essentiellement par le ruissellement, qui durant la saison des pluies devient considérable en raison de l'intensité des précipitations et de la pente du relief. Sur le secteur environnant le projet, la totalité des ravines et des talwegs sont à sec la plupart du temps, arrivant parfois à faire oublier aux riverains leur simple présence. Elles peuvent cependant atteindre des débits de l'ordre de la centaine de mètres cubes par seconde en crue centennale.

2.4.2. Cartographie des bassins versants

Les bassins versants ont été cartographiés à l'aide de la Litto 3D 5m et des observations de terrain. Les caractéristiques morphologiques sont présentés Tableau 2

Bassin Versant	Surface (km²)	Surface (ha)	Longueur du BV (m)	Alt max (m)	Alt min (m)	Pente moyenne (%)	Alt moyenne pondérée (m)	Allongement	Périmètre (km)
BV 1	0.13	12.83	740.00	583.00	530.00	7.16	556.50	2.07	1.63
BV 2	0.17	16.58	1000.00	620.00	540.00	8.00	580.00	2.46	2.17
BV 3	0.09	9.20	590.00	600.00	540.00	10.17	570.00	1.95	1.40
BV 4	0.03	2.58	400.00	570.00	540.00	7.50	555.00	2.49	0.68
BV 5	0.04	3.69	620.00	592.00	542.00	8.06	567.00	3.23	1.23

Tableau 2 : Caractéristiques des bassins versants

La cartographie des bassins versants est présentée Figure 10.

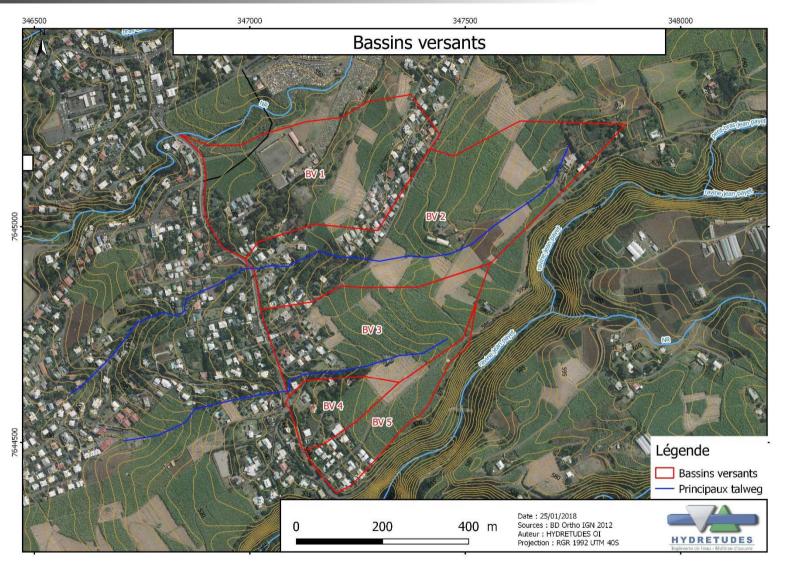


Figure 10 : Cartographie des bassins versants

2.4.3. Détermination des débits de projet

La méthode utilisée dans la détermination des débits de projet est celle du « Guide sur les modalités de gestion des eaux pluviales à la Réunion » de 2012, ouvrage faisant actuellement office de référence pour les projets de gestion des eaux pluviales à la Réunion.

2.4.3.1. Détermination des temps de concentration

Le temps de concentration correspond au temps que met le ruissellement d'une averse pour parvenir à l'exutoire depuis le point du bassin le plus éloigné.

Les temps de concentration ont pu être calculés à partir des caractéristiques morphologiques des bassins versants présentées dans le ci-dessus.

Les formules préconisées dans le Guide sur les modalités de gestion des eaux pluviales à la Réunion (DEAL, 2012) ont été utilisées. La moyenne des formules de RICHARDS, KIRPICH 2 et des rectangles équivalents a été calculée et utilisée pour les calculs de débits.

Bassin	Tc
Versant	(min)
BV 1	9.49
BV 2	11.93
BV 3	7.10
BV 4	4.99
BV 5	7.64

Tableau 3 : Temps de concentration

2.4.3.2. Choix des périodes de retour

Les périodes de retour retenus en accord avec le maitre d'ouvrage sont de 10ans, 30ans et 100ans.

2.4.3.3. Détermination de la pluie de projet

Les pluies qui génèrent les plus forts débits sur ce type de bassin versant (bassin versant pluvial de pentes modérées à fortes) sont de courtes durées (inférieures à 1 h) et de fortes intensités. La méthode du « Guide sur les modalités de gestion des eaux pluviales à la Réunion » (2012) de la DEAL a été utilisée dans la présente étude pour déterminer les pluies de projet.

Il s'agit dans un premier temps de déterminer les coefficients de Montana, selon un zonage pluviométrique simplifié :

CONTRACTOR OF STREET	Zonage pluviomètri que (alt itude en m)						
Commune	100	100 250	250 500	500 1000	1000 1600	1600	
Sainte-Marie	1	2	2	-3	164 SH	-4-	
Saint-Denis	1	2	2	3	4.29	4	
Le Port	1	1			100.00		
La Possession Bas		1	1	2	2		
La Possession Mafate		127		3	3	3	
Saint-Paul	1	1	1	2	2	3	
Trois Bassins	1	1	1	2	2	3	
Saint-Leu	1	1	1	3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3 3 3	
Les Avirons	1	1	1	2	2	3	
L'Etang-Salé	1	1	1	2	2	3	
Cilaos			3	3	3	3	
Saint-Louis	1	1	- 1	2	3 2 3	3	
L'Entre-Deux	1000	1	1	2	3		
Saint-Pierre	1	1	1	2	3	4	
e Tempon	10000		1	2	3 3 3		
Petite-lie	1	1	2	2	3	- 4	
Saint-Joseph	2	2	3	3		5	
Saint-Philippe	3 3	3	4	4 11	1.5	5	
Sainte-Rose	3	3 3	. 4	A	- 5	- 5	
Saint-Benoît (Sud RN 3)	3	3	3		-	18	
La Plaine des Palmistes						1/8	
Saint-Benoît (Nord RN 3)	3	3	3	- 4	5	6	
Bras-Panon	2	3	3	4	5	5	
Salazie	100		5	5	5	5	
Saint-André	2	3					
Sainte-Suzanne (Est Riv)	2	3 2	3 3 3	3			
Sainte-Suzanne (Ouest Riv)	2	2	3	3			

Figure 11 : Zonage pluviométrique simplifié (Guide sur les modalités de gestion des eaux pluviales à la Réunion, DEAL, 2012)

D'après ce zonage, les bassins versants de l'étude se situent en zone 1 correspondant aux coefficients de Montana qui suivent :

Zone	Coefficient A	Coefficient B
1	60	+ 0,33
2	72	+ 0,33
3	85	+ 0,33
4	100	+ 0,33
5	130	+ 0,33

Tableau 4 : Coefficients de Montana en fonction de la zone pluviométrique simplifiée (Guide sur les modalités de gestion des eaux pluviales à la Réunion, DEAL, 2012)

Afin de déterminer la pluie décennale, trentennale et centennale horaire à partir de la pluie décennale horaire, une loi de Gumbel est utilisée :

$$i(d,T) = i(1h,10ans) \times (0.186 \times \ln(T) + 0.572) \times d^{-0.33}$$

Avec:

d : durée de la pluie, égale au temps de concentration

i(1h,10ans) : pluie décennale horaire, égale au coefficient A de Montana

T : temps de retour (années)

2.4.3.4. Détermination du coefficient de ruissellement

Le tableau ci-dessous détaille les valeurs des coefficients de ruissellement unitaires (pour une période de retour de 20 ans) en fonction de la classe de perméabilité des sols et du type d'occupation du sol.

Coefficient de ruissellement unitaire			
Terrain urbanisé	1		
Terrain mixte	0,6		
Terrain semi-perméable	0,5		
Terrain peu perméable	0,7		

Tableau 5 : Coefficients de ruissellement unitaires

Le projet d'aménagement objet de cette étude fonctionnera sur du long terme. Les éventuels projets d'urbanisation à venir doivent donc être anticipés en consultant le Plan d'Occupation des Sols (POS) de la commune du Tampon.

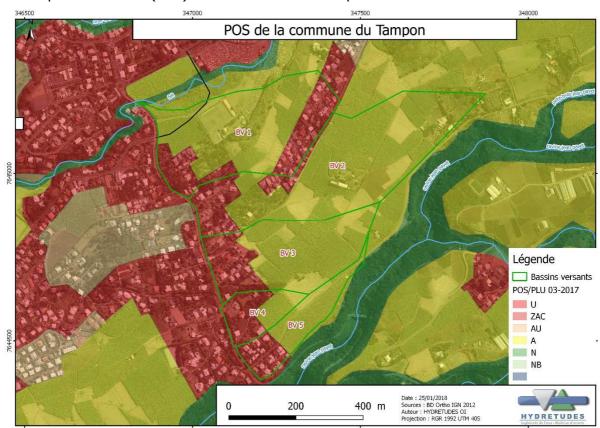


Figure 12 : Plan d'occupation des sols de la commune du Tampon

La consultation du POS indique que les bassins versants de la RD3 comprennent des zones U et des Zones A. Les zones U étant déjà urbanisée, il ne devrait pas y avoir à l'avenir d'opération d'urbanisation d'envergure modifiant sensiblement les écoulements.

L'occupation des sols retenue pour les calculs hydrologique est donc celle de l'état actuel.

EH_LaPointe

Le coefficient de ruissellement du bassin versant se calcule par pondération, par la surface au sol, des coefficients de ruissellement unitaires. Ainsi, les coefficients de ruissellement déterminés pour chaque bassin versant sont présentés Tableau 6.

Bassin Versant	C10 et C30	C100
BV 1	0.62	0.90
BV 2	0.55	0.90
BV 3	0.58	0.90
BV 4	0.60	0.90
BV 5	0.62	0.90

Tableau 6 : Coefficients de ruissellement

2.4.3.5. <u>Détermination des débits de projet</u>

Les débits de projet ont été déterminés par application de la méthode rationnelle, dont la formule est la suivante :

$$Q_T = \frac{C_T \times I \times S}{6}$$

Avec:

Q(T) : débit de pointe de période de retour T de l'hydrogramme en m³/s,

C(T) : coefficient de ruissellement pour la pluie de période de retour T,

S : surface du bassin versant en ha,

I : intensité de l'averse en mm/min issue des coefficients de Montana.

Les résultats sont présentés Tableau 7.

Bassin Q10 p Versant (m³/s)		Q30 p (m³/s)	Q100 p (m³/s)
BV 1	2.91	3.50	6.06
BV 2	3.13	3.77	7.27
BV 3	2.16	2.61	4.78
BV 4	0.70	0.84	1.51
BV 5	0.91	1.09	1.88

Tableau 7 : Débits de projet

3. PROPOSITION D'AMENAGEMENT

3.1. AMENAGEMENT ET RECALIBRAGE DU RESEAU EP DE LA RD3

Les évènements de janvier 2018 font apparaître clairement la nécessité de réaménager le réseau d'eaux pluviales de la RD3 (ou chemin Paille en Queue).

Le système actuel du réseau d'eau pluviale comporte 4 exutoires, dont 2 talweg urbanisés (voire descriptif §2.1).

L'objectif principal de l'aménagement proposé est de supprimer les 2 rejets dans les talwegs urbanisés.

Le second objectif est d'améliorer la fonction d'interception du réseau en remplaçant les buses équipées de regards par un large canal en U sur toute la longueur de la RD3 entre la Ravine du Cimetière et la Ravine Jacques Payet.

L'aménagement consiste à :

- recalibrer les fossés et caniveaux existants sur la RD3,
- créer un caniveau là où le réseau est inexistant,
- remplacer les buses latérales de la RD3 par un caniveau,
- · redimensionner l'exutoire vers la ravine Jacques Payet,
- proposer aux riverains de la rue des Filaos la mise en place d'une noue végétalisée correctement dimensionnée pour absorber de forts débits,
- mettre en place des buses pour transférer le ruissellement des noues vers le caniveau de la RD3.

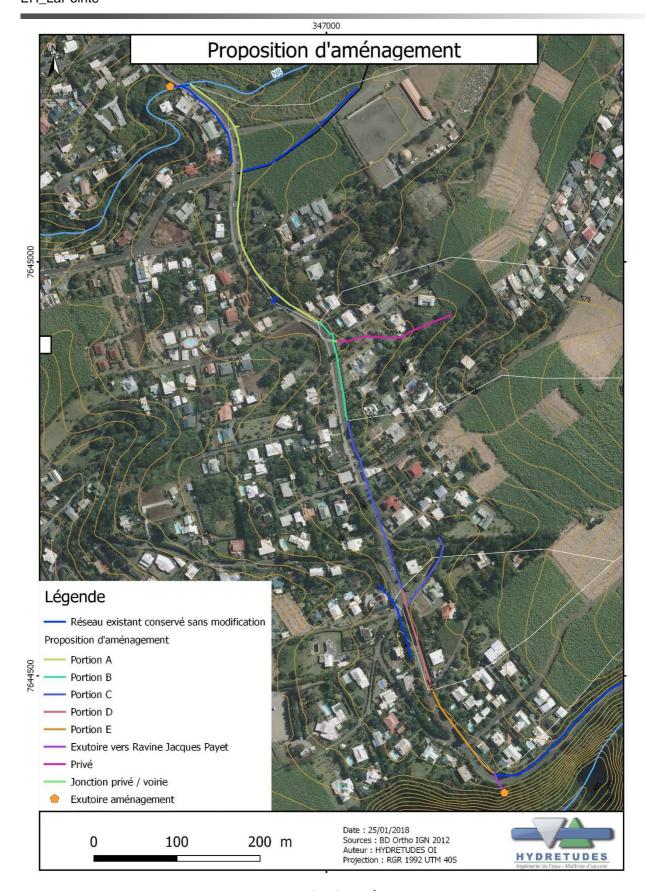


Figure 13 : Cartographie des aménagements

3.2. METHODE DE DIMENSIONNEMENT DES OUVRAGES HYDRAULIQUES

Les dimensions projetées des ouvrages ont été déterminées par application de la Formule de Manning-Strickler (voir ci-dessous).

$$Q = K \times S \times R^{2/3} \times i^{1/2}$$

Avec:

- K : coefficient de Strickler (sans unité, paramètre dépendant de la rugosité du matériau de l'ouvrage) ;
- S: Surface mouillée (m²);
- R: rayon hydraulique (m);
- *I : pente de l'ouvrage (m/m).*

Valeurs de rugosités utilisées :

Structure	K : coefficient de Strickler utilisé
Béton	60
Maçonnerie	50
Métal	70
PVC	80
PVC annelé	80
Mixte	30
Naturel	20

Tableau 9 : Coefficients de Strickler utilisés

3.3. RESULTATS

Le dimensionnement a été réalisé sur la base des débits de projets décennaux (Tableau 8), trentennaux (Tableau 9) et centennaux (Tableau 10).

Le détail des calculs de dimensionnement se trouve en annexe.

	Débit de projet						Débit
	T=10 ans	Туре				Coefficient de	Capable
Portion	(m³/s)	d'ouvrage	Pente	Dimensions (mm)	Matériau	Strickler	(m³/s)
				L=1580	Bajoyers : Béton	Bajoyers: 60	
Α	6.04	Canal en U	0.02	H =1050	Radier : Terre	Radier: 30	6.48
				L=1130	Bajoyers : Béton	Bajoyers: 60	
В	3.13	Canal en U	0.03	H=750	Radier : Terre	Radier: 30	3.23
				L=1050	Bajoyers : Béton	Bajoyers: 60	
С	2.16	Canal en U	0.02	H=700	Radier : Terre	Radier: 30	2.20
				L=1580	Bajoyers : Béton	Bajoyers: 60	
D	2.86	Canal en U	0.004	H=1050	Radier : Terre	Radier: 30	2.90
				L=1350	Bajoyers : Béton	Bajoyers: 60	
E	3.77	Canal en U	0.02	H=900	Radier : Terre	Radier: 30	4.29
Exutoire Ravine				L=1600			
Jacques Payet	3.77	Dalot	0.01	H=750	Béton	60	3.82
		Noue végétalisée		L*= 2700			
Privée	3.13	(Fruit 3/1)	0.05	H**=450	Terre végétalisée	20	3.88
Raccordement				L=1500			
Privée / Voirie	3.13	Dalot	0.015	H=600	Béton	60	3.18
* Largeur au plafo	nd ; ** Hauteur des	berges					

Tableau 8 : dimensionnement pour une occurrence décennale

A la vue de ces premiers résultats, on constate que le réseau actuel est insuffisant pour une occurrence décennale.

	Débit de projet	_					Débit
	T=30 ans	Туре				Coefficient de	Capable
Portion	(m³/s)	d'ouvrage	Pente	Dimensions (mm)	Matériau	Strickler	(m³/s)
				L=1650	Bajoyers : Béton	Bajoyers: 60	
Α	7.27	Canal en U	0.02	H=1100	Radier : Terre	Radier: 30	7.33
				L=1200	Bajoyers : Béton	Bajoyers: 60	
В	3.77	Canal en U	0.03	H=800	Radier : Terre	Radier: 30	3.84
				L=1130	Bajoyers : Béton	Bajoyers: 60	
С	2.61	Canal en U	0.02	H=750	Radier : Terre	Radier: 30	2.64
				L=1730	Bajoyers : Béton	Bajoyers: 60	
D	3.45	Canal en U	0.004	H=1150	Radier : Terre	Radier: 30	3.69
				L=1430	Bajoyers : Béton	Bajoyers: 60	
E	4.54	Canal en U	0.02	H=950	Radier : Terre	Radier: 30	4.96
Exutoire Ravine				L=1650			
Jacques Payet	4.54	Dalot	0.01	H =850	Béton	60	4.71
		Noue végétalisée		L*= 2700			
Privée	3.77	(Fruit 3/1)	0.05	H**=450	Terre végétalisée	20	3.88
Raccordement				L=1750			
Privée / Voirie	3.77	Dalot	0.015	H=600	Béton	60	3.89
* Laraeur au plafo	nd ; ** Hauteur des	berges					

Tableau 9 : dimensionnement pour une occurrence trentennale

Mairie du Tampon 27

EH_LaPointe

	Débit de projet	Torre				C#:-:	Débit
. .:	T=100 ans	Туре	5 .	D:		Coefficient de	Capable
Portion	(m³/s)	d'ouvrage	Pente	Dimensions (mm)		Strickler	(m³/s)
				L=2100	Bajoyers : Béton	Bajoyers: 60	
Α	13.33	Canal en U	0.02	H =1400	Radier : Terre	Radier: 30	13.94
				L=1580	Bajoyers : Béton	Bajoyers: 60	
В	7.27	Canal en U	0.03	H=1050	Radier : Terre	Radier: 30	7.93
				L=1430	Bajoyers : Béton	Bajoyers: 60	
С	4.78	Canal en U	0.02	H=950	Radier : Terre	Radier: 30	4.96
				L=2180	Bajoyers : Béton	Bajoyers: 60	
D	6.29	Canal en U	0.004	H=1450	Radier : Terre	Radier: 30	6.85
				L=1730	Bajoyers : Béton	Bajoyers: 60	
E	8.17	Canal en U	0.02	H=1150	Radier : Terre	Radier: 30	8.25
Exutoire Ravine				L=2000			
Jacques Payet	8.17	Dalot	0.01	H=1100	Béton	60	8.58
		Noue végétalisée		L*= 3600			
Privée	7.27	(Fruit 3/1)	0.05	H**=600	Terre végétalisée	20	8.36
Raccordement				L=2000			
Privée / Voirie	7.27	Dalot	0.015	H=850	Béton	60	7.44
* Largeur au plafoi	nd ; ** Hauteur des	berges					

Tableau 10 : Dimensionnement pour une occurrence centennale

4. CONCLUSION

Au vu des enjeux, il est préconisé de dimensionner les aménagements pour une occurrence centennale (Tableau 10).

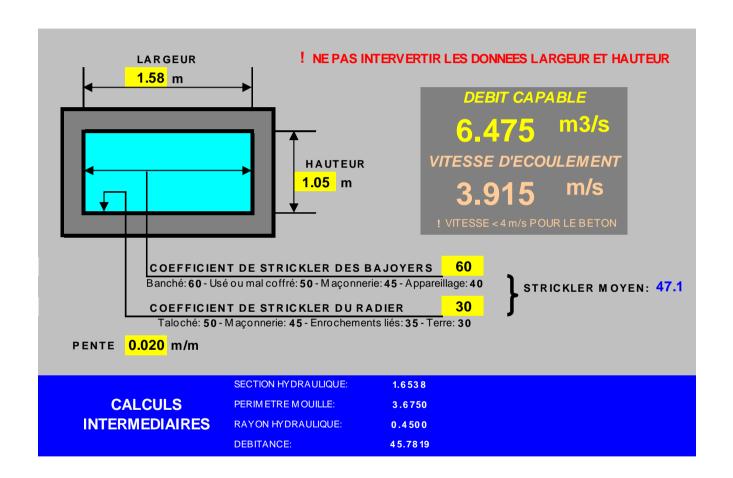
ANNEXES

Annexe 1 : Fiches de calculs hydrologiques Annexe 2 : Dimensionnement hydraulique

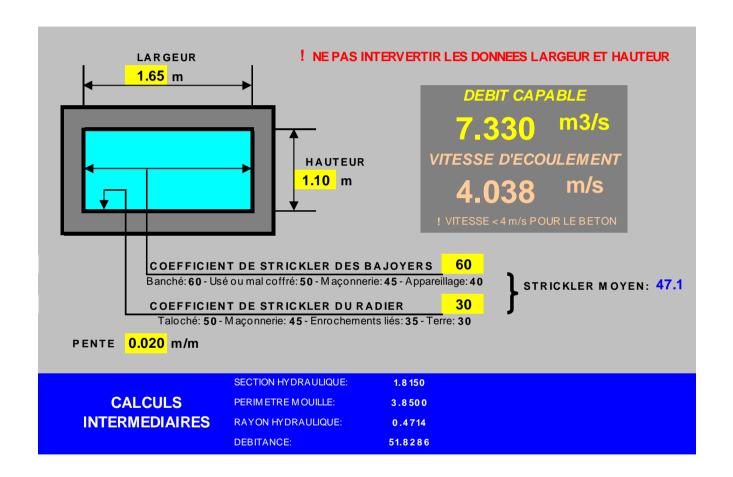
ANNEXE 1: FICHES DE CALCULS HYDROLOGIQUES

F	iche standa	ard de résul	tats - HYDI	ROLOGIE			
Commune :		Nom du	projet :		Dat	te :	
Le Tampon	EH La		janv-18				
Le rumpon				Jun			
	CARA	CTERISTIQUE	S GENERAL	ES .			
Nature du point de rejet (natur infiltration,):							
Surface du projet en ha :				0.00			
Nom du bassin versant :				BV 1			
Surface du bassin versant (ha)	:			12.83			
Surface du projet + surface du versant intercepté (ha) :	bassin			12.83			
Zone Météorologique		1	2	3	4	5	
Pourcentage du BV (%)		-	100	-	-	-	
	PΔ	RAMETRES	D'ENTREE				
Longueur du chemin hydraulique le plus long (m):	740						
Pente moyenne le long de ce chemin (%) :			7	.2			
Coefficient d'allongement :			2.	07			
Temps de concentration (min)	Passini	Ridchards	Kirpich2	Rectangles equivalents			
(·····)	-	12.2	6.0	10.3	9.5		
	BJECTIF DE	PERFORMA	NCE DES OU	VRAGES			
Période de retour à prendre er	compte :	2 à 100 ans					
Coefficient de ruissellement (de	écennal) :	0.617					
Coefficient de ruissellement (ce	0.90						
G (G : 1/2) M			а		b		
Coefficient(s) de Montana :			72	0.33			
Méthode de calcul débits :		Méthode rationnelle					
Ooccurence	Q2	Q5	Q10	Q30	Q100		
Valeurs débits (m³/s) - Etat ini		2.04	2.54	2.91	3.50	6.06	
Valeurs débits (m³/s) - Etat pro	ojet (Qp)	2.04	2.54	2.91	3.50	6.06	
∆Q = Qp - Qi		0.00	0.00	0.00	0.00	0.00	

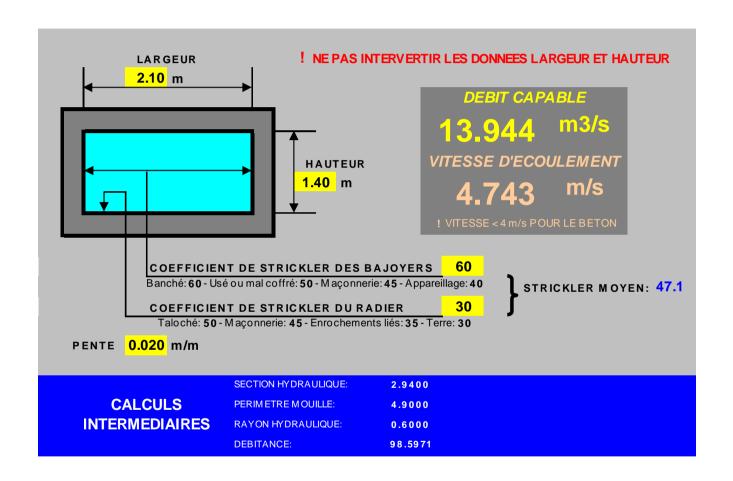
F	iche standa	ard de résul	tats - HYDI	ROLOGIE			
Commune :		Nom du	projet :	Date :			
Le Tampon	EH_La	Pointe	janv-18				
	CARA	CTERISTIQUE	S GENERAL	FS			
Nature du point de rejet (natur infiltration,) :			O GLIETOVE				
Surface du projet en ha :				0.00			
Nom du bassin versant :				BV 2			
Surface du bassin versant (ha)	:			16.58			
Surface du projet + surface du versant intercepté (ha) :	bassin			16.58			
Zone Météorologique		1	2	3	4	5	
Pourcentage du BV (%)		-	100	-	-	-	
	P/	RAMETRES	D'ENTREE				
Longueur du chemin hydraulique le plus long (m):		1000					
Pente moyenne le long de ce chemin (%) :		8.0					
Coefficient d'allongement :			2.	46			
Temps de concentration (min)	Passini	Ridchards	Kirpich2	Rectangles equivalents			
	-	15.0	6.6	14.2	11.9		
	BJECTIF DE	PERFORMA	NCE DES OU	VRA GES			
Période de retour à prendre er	compte :			2 à 100 ans			
Coefficient de ruissellement (d	écennal) :	0.554					
Coefficient de ruissellement (co	entennal) :	0.90					
		a			b		
Coefficient(s) de Montana :			72	0.	33		
Méthode de calcul débits :			Mé	thode rationn	elle		
Ooccurence		Q2	Q5	Q10	Q30	Q100	
Valeurs débits (m³/s) - Etat ini		2.20	2.73	3.13	3.77	7.27	
Valeurs débits (m³/s) - Etat pr	ojet (Qp)	2.20	2.73	3.13	3.77	7.27	
ΔQ = Qp - Qi		0.00	0.00	0.00	0.00	0.00	

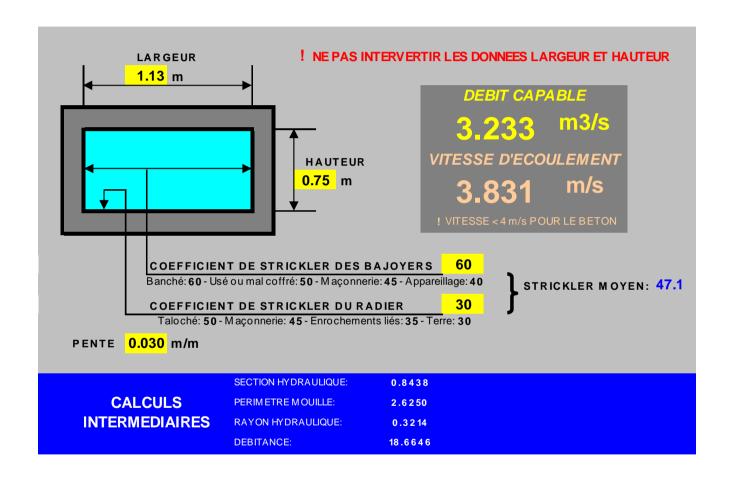

F	iche standa	ard de résul	tats - HYDF	ROLOGIE			
Commune :		Nom du	projet :		Da	te :	
Le Tampon	EH_La	Pointe		janv-18			
	CARA	CTERISTIQUE	S CENEDAL	FC			
Nature du point de rejet (natur infiltration,):		CIERISTIQUE	S GLILLIAL	<u> </u>			
Surface du projet en ha :				0.00			
Nom du bassin versant :				BV 3			
Surface du bassin versant (ha)	:			9.20			
Surface du projet + surface du versant intercepté (ha) :	bassin			9.20			
Zone Météorologique		1	2	3	4	5	
Pourcentage du BV (%)		-	100	-	-	-	
	DA	DA METDES	D'ENTREE				
Longueur du chemin hydraulique le plus long (m):	PARAMETRES D'ENTREE 590						
Pente moyenne le long de ce chemin (%) :		10.2					
Coefficient d'allongement :			1.	95			
Temps de concentration (min)	Passini	ssini Ridchards Kirpich2 Rectangles equivalents		Моу	enne		
()	-	9.4	9.4 4.5 7.4		7	7.1	
(OBJECTIF DE	PERFORMA	NCE DES OU	VRAGES			
Période de retour à prendre er	compte :	2 à 100 ans					
Coefficient de ruissellement (d	écennal) :	0.582					
Coefficient de ruissellement (co	0.90						
Coefficient(s) de Montana :		a			b		
. ,		72	0.33				
Méthode de calcul débits :	Méthode rationnelle						
Ooccurence		Q2	Q5	Q10	Q30	Q100	
Valeurs débits (m³/s) - Etat ini		1.52	1.89	2.16	2.61	4.78	
Valeurs débits (m³/s) - Etat pro	ojet (Qp)	1.52	1.89	2.16	2.61	4.78	
$\Delta Q = Qp - Qi$		0.00	0.00	0.00	0.00	0.00	

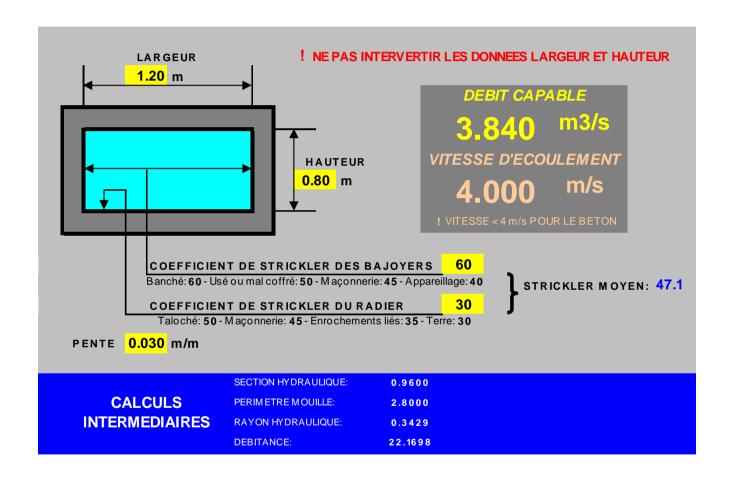
Fiche standard de résultats - HYDROLOGIE									
Commune :		Nom du	projet :		Da	te :			
Le Tampon	EH_La			janv-18					
CARACTERISTIQUES GENERALES									
Nature du point de rejet (natur infiltration,):	e, réseau,								
Surface du projet en ha :				0.00					
Nom du bassin versant :				BV 4					
Surface du bassin versant (ha)	:			2.58					
Surface du projet + surface du versant intercepté (ha) :	bassin			2.58					
Zone Météorologique		1	2	3	4	5			
Pourcentage du BV (%)		-	100	-	-	-			
	PΔ	RAMETRES	D'ENTREE						
Longueur du chemin hydraulique le plus long (m):	400								
Pente moyenne le long de ce chemin (%) :			7	.5					
Coefficient d'allongement :			2.	49					
Temps de concentration (min)	Passini	Ridchards	Kirpich2	Rectangles equivalents					
,	-	7.8	3.4	3.8	5.0				
C	BJECTIF DE	PERFORMA	NCE DES OU	VRA GES					
Période de retour à prendre en	compte :	2 à 100 ans							
Coefficient de ruissellement (de	écennal) :	0.597							
Coefficient de ruissellement (ce	entennal) :	0.90							
Coefficient(s) de Montana :		a				b			
coemcient(s) de Piontana .		72	0.	33					
Méthode de calcul débits :		Mé	thode rationn	elle					
Ooccurence	Q2	Q5	Q10	Q30	Q100				
Valeurs débits (m³/s) - Etat ini		0.49	0.61	0.70	0.84	1.51			
Valeurs débits (m³/s) - Etat pro	ojet (Qp)	0.49	0.61	0.70	0.84	1.51			
ΔQ = Qp - Qi		0.00	0.00	0.00	0.00	0.00			

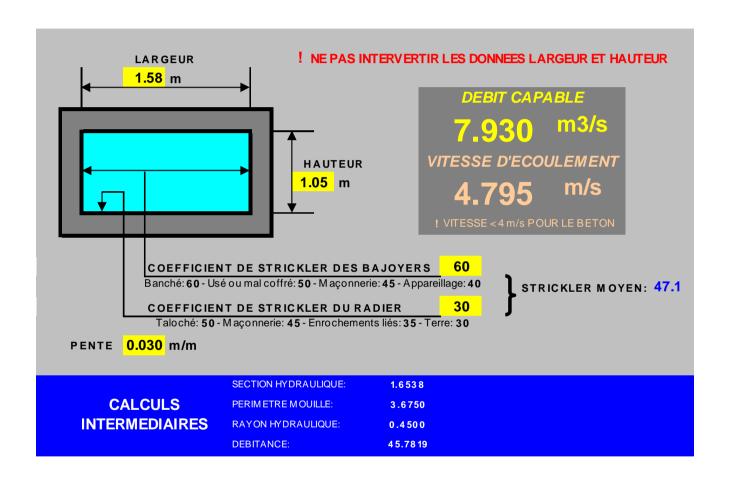

F	iche standa	ard de résul	tats - HYDF	ROLOGIE			
Commune :	Nom du	projet :	Date :				
Le Tampon	EH_La			janv-18			
	CARA	CTERISTIQUE	S GENERAL	ES .			
Nature du point de rejet (natur infiltration,):	e, réseau,						
Surface du projet en ha :				0.00			
Nom du bassin versant :				BV 5			
Surface du bassin versant (ha)	:			3.69			
Surface du projet + surface du versant intercepté (ha) :	bassin			3.69			
Zone Météorologique		1	2	3	4	5	
Pourcentage du BV (%)		-	100	-	-	-	
	P/	ARAMETRES	D'ENTREE				
Longueur du chemin hydraulique le plus long (m):			6	20			
Pente moyenne le long de ce chemin (%) :			8	.1			
Coefficient d'allongement :			3.	23			
Temps de concentration (min)	Passini	Ridchards	Kirpich2	Rectangles equivalents			
,	-	10.3 4.0 8.6 7.6			7.6		
	DBJECTIF DE	PERFORMA	NCE DES OU	VRA GES			
Période de retour à prendre er	compte :	2 à 100 ans					
Coefficient de ruissellement (d	écennal) :	0.622					
Coefficient de ruissellement (co	entennal) :		0.90				
Coefficient(s) de Montana :		a				b	
coemcienas) de Pionana.		72			0.	33	
Méthode de calcul débits :			Mé	thode rationn	elle		
Ooccurence		Q2	Q5	Q10	Q30	Q100	
Valeurs débits (m³/s) - Etat ini	tial (Qi)	0.64	0.79	0.91	1.09	1.88	
Valeurs débits (m³/s) - Etat pr	0.64	0.79	0.91	1.09	1.88		
$\Delta Q = Qp - Qi$		0.00	0.00	0.00	0.00	0.00	

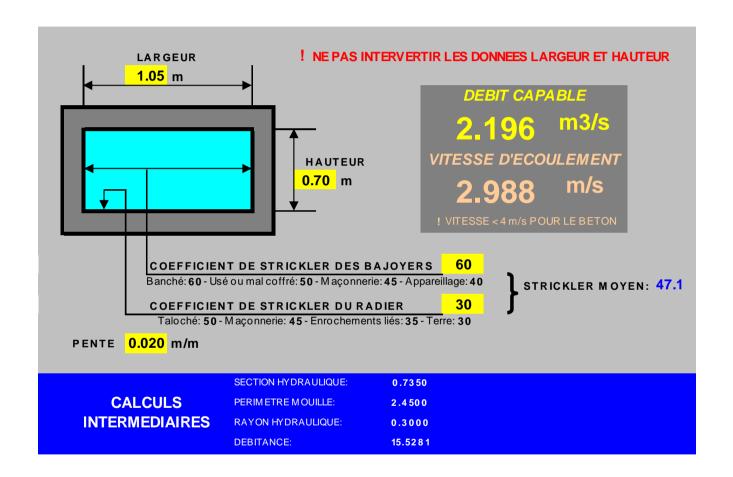
ANNEXE 2: DIMENSIONNEMENT HYDRAULIQUE

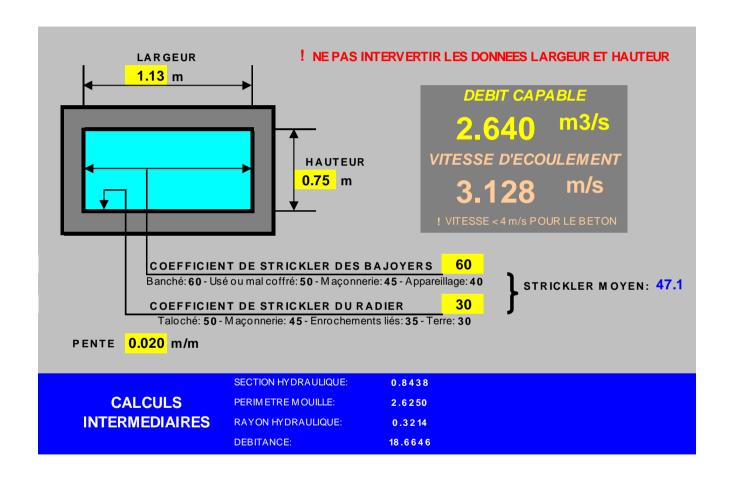

Portion A, T=10 ans

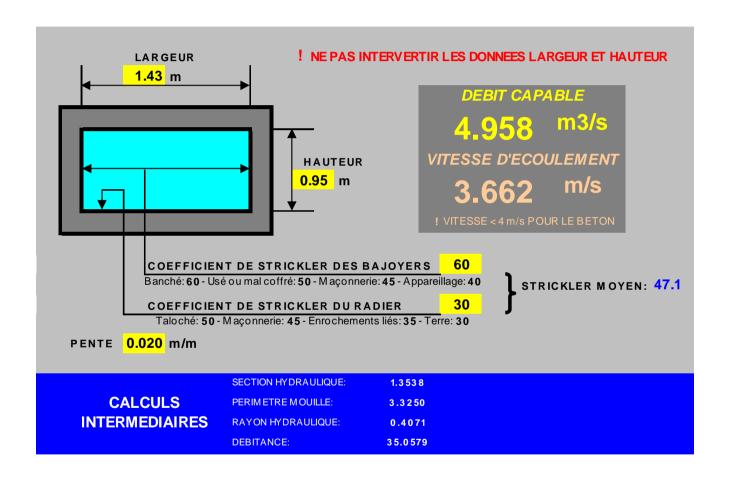

Portion A, T=30 ans

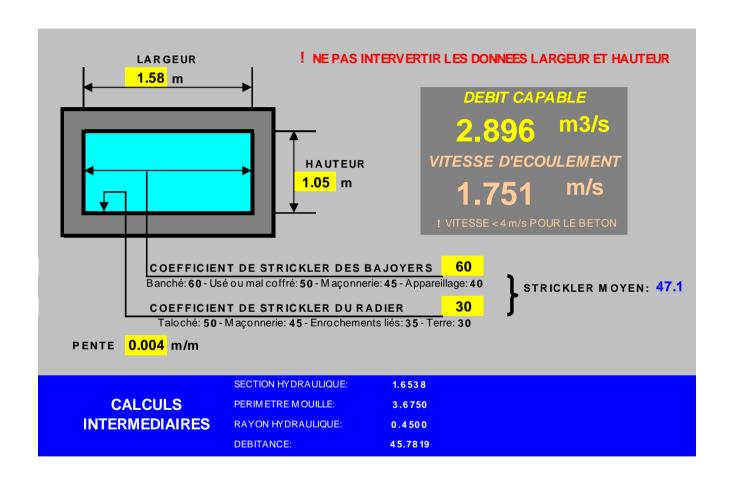

Portion A, T=100 ans

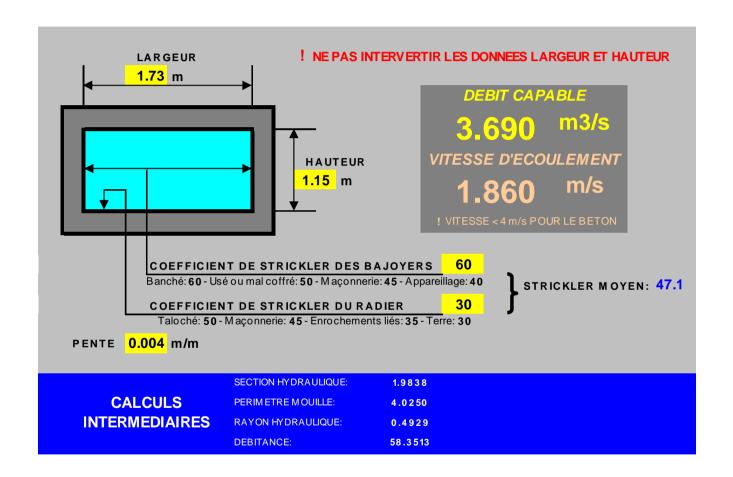

Portion B, T=10 ans

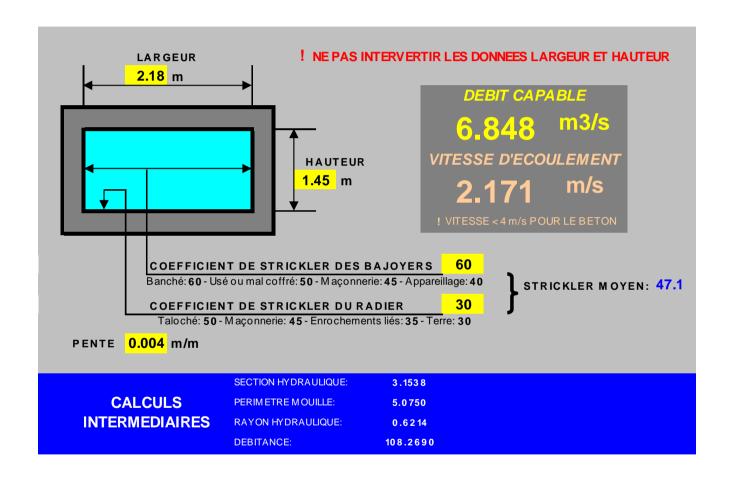

Portion B, T=30 ans

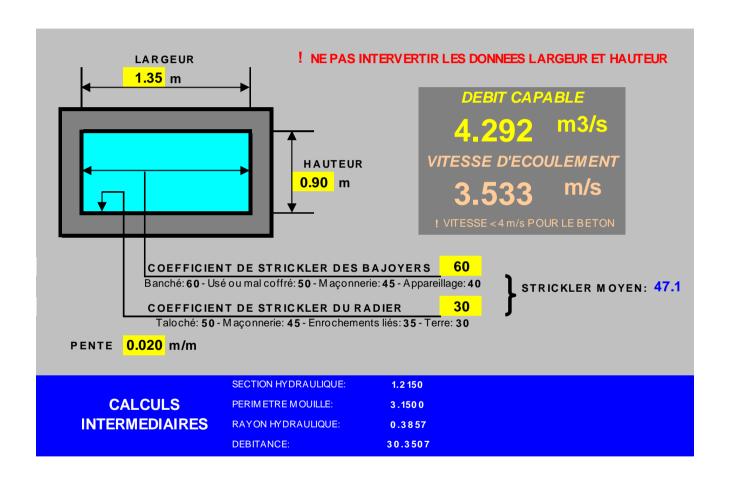

Portion B, T=100 ans

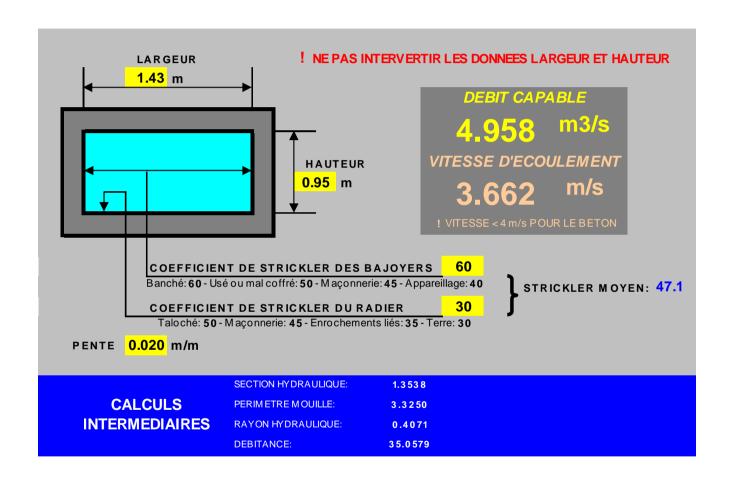

Portion C, T=10 ans

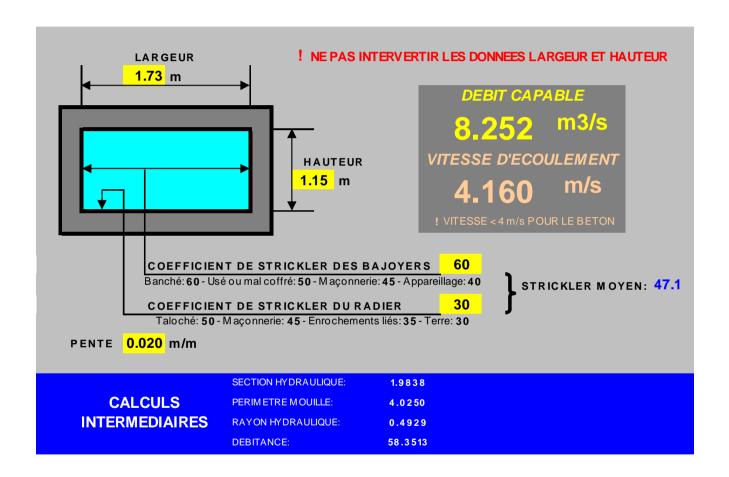

Portion C, T=30 ans

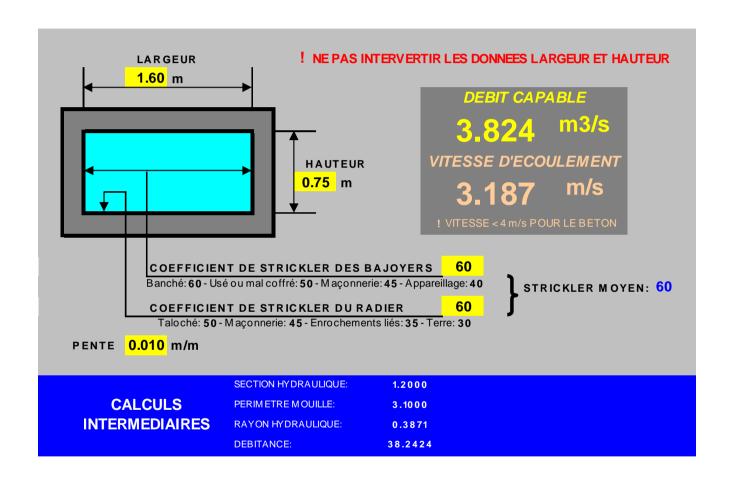

Portion C, T=100 ans

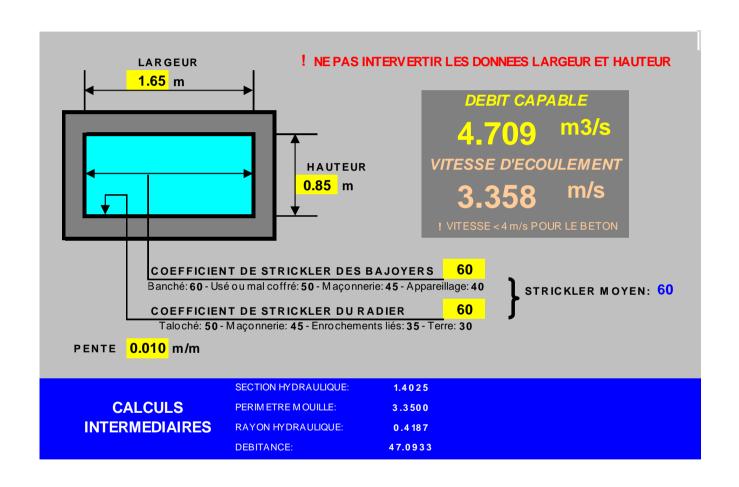

Portion D, T=10 ans

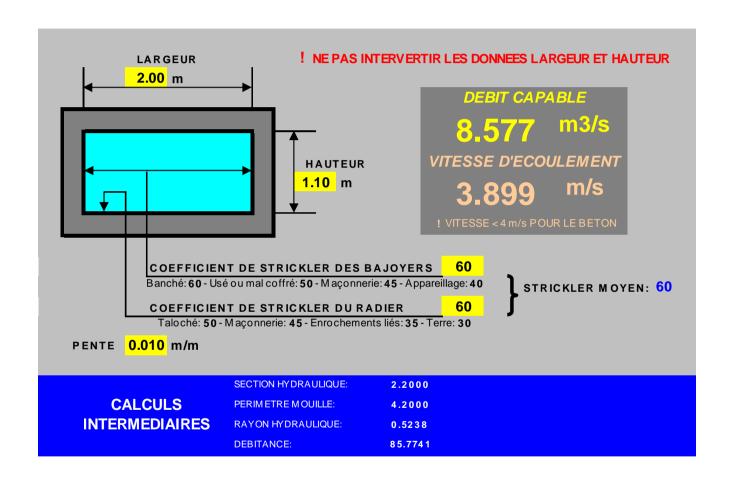

Portion D, T=30 ans

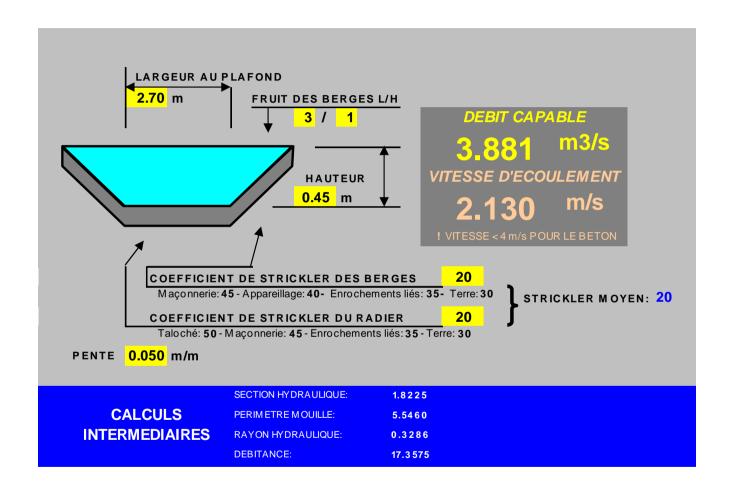

Portion D, T=100 ans

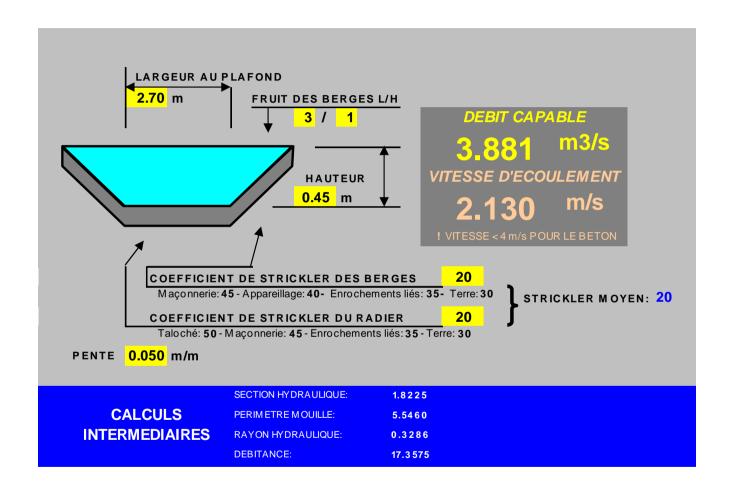

Portion E, T=10 ans

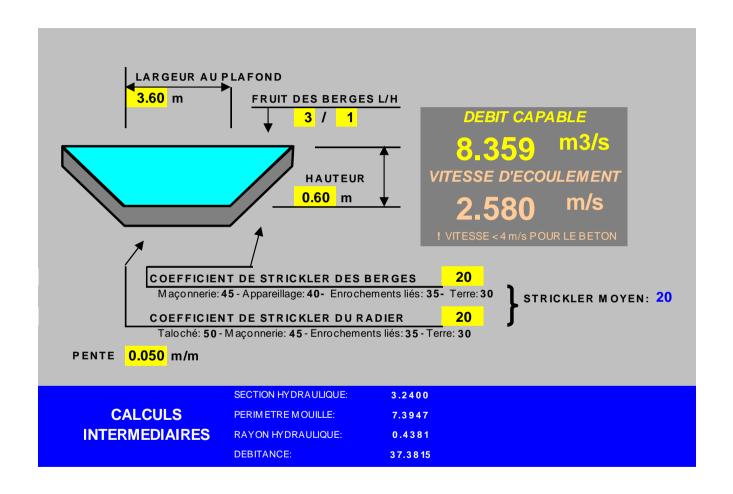

Portion E, T=30 ans


Portion E, T=100 ans

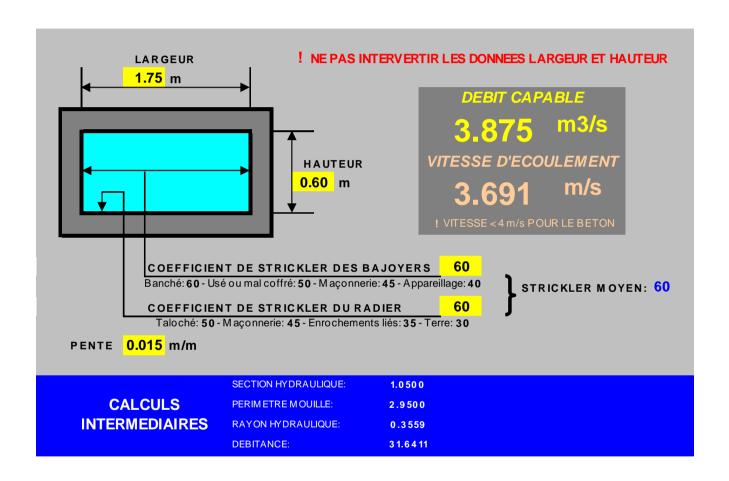

Exutoire Ravine Jacques Payet, T=10 ans

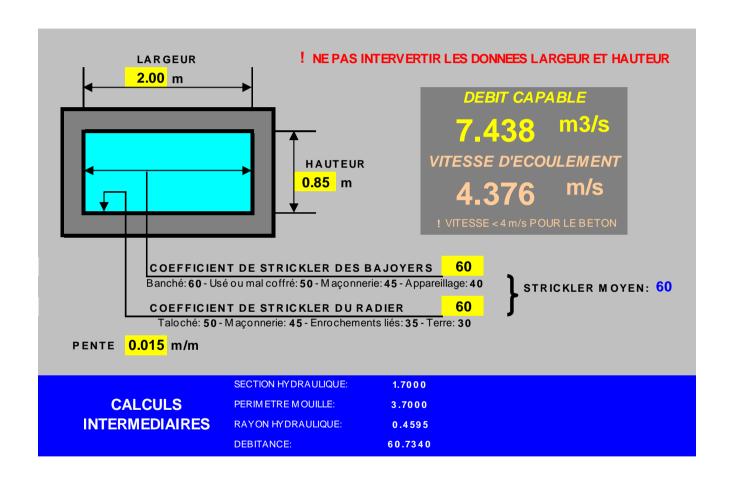

Exutoire Ravine Jacques Payet, T=30 ans


Exutoire Ravine Jacques Payet, T=100 ans


Noue sur parcelles privées, T=10 ans


Noue sur parcelles privées, T=30 ans


Noue sur parcelles privées, T=100 ans


Raccordement Privé / Voirie, T=10 ans

Raccordement Privé / Voirie, T=30 ans

Raccordement Privé / Voirie, T=100 ans

